Chemistry Chapter 10 –	Chemical Quantities	Name Date
Mole		
	es of a substance =	representative particles of a
substa	nce.	
	This is Avogadro's number	
0	Representative particles can be:	
	1	
	2	(2 nonmetals)
	3	(metals + nonmetals/polyatomics)
	4	
Converting	Moles to Particles $-1 \text{ mol} = 6.0$	2 x 10 ²³ particles
• Exam		•
	How many atoms are there in 0.360	moles of silver?
	•	
0	How many moles of magnesium is	1.25 v 10 ²³ atoms of magnesium?
O	flow many moles of magnesium is	1.23 x 10 atoms of magnesium:
0	How many molecules are in 2.0 mc	les of chlorine gas?
0	How many moles are in 3.7×10^{25} :	formula units of potassium chloride?
	How many moles are contained in	4.65 x 10 ²⁴ molecules of nitrogen dioxide?
O	flow many moles are contained in	+.03 x 10 molecules of introgen dioxide?
Converting N	Moles to Volume $-1 \text{ mol} = 22.4$	L
• This re	elationship is only for gasses at	
0	Standard Temperature =	
0	Standard Pressure =	or
• Exam	ples:	
0	Determine the volume, in liters, of	0.60 mol sulfur dioxide gas at STP.
0	75 L of N ₂ gas is how many moles?	
O	75 L of 142 gas is now many moles.	
0	Determine the number of moles in	33.6 L of helium gas.
	What is the volume of $3.20 \times 10^{-3} \mathrm{n}$	nol carbon diovide are at STD?

 \circ What volume, in liters, is 2.5 moles of CO₂ at STP?

Form		ass (Molar Mass)	
•	The at	comic mass (amu) of an element in grams is the of a	of
	the ele	ement.	
•	To det	termine the molar mass of a compound you must start with a correct formula.	
	0	Remember the rules for naming ionic, molecular and acidic compounds.	
•	Add u	p the masses of all atoms in the compound for the overall molar mass.	
•	Exam	ples:	
	0	Water	
	0	Carbon dioxide	
	0	Sodium bicarbonate	
	0	Calcium fluoride	
	0	Phosphorus trichloride	
	0	Calcium sulfate	
Conve	_	Moles to Grams – 1 mol = molar mass	
•		nust find molar mass!	
•	Exam o	How many grams are in 7.20 mol of N ₂ O ₃ ?	
	0	How many moles is 28 grams of ammonium phosphate?	
	0	What is the mass of 9.45 mol of aluminum oxide?	
	0	How many moles of iron(III) oxide are contained in 92.2 g of pure iron(III) oxide?	
	0	How many grams is 0.29 mol of K ₂ S?	

The Mole Road Map

• Mixed Practice:

- o Calculate the molar mass of:
 - Sodium sulfate
 - Zinc nitrate
- o Convert the following:
 - 125 g mercury (I) sulfate to moles
 - 1.5 x 10²⁰ molecules of Fluorine gas to moles
 - A sample of NH₃ gas occupies 75.0 liters at standard conditions. How many molecules is this?
 - 0.987 moles of dinitrogen trioxide to grams.
 - 10.5 L of oxygen gas to grams.

The relat	ive amounts of each	in a	•
Formula	ı:		
	% Mass of Element E	= <u>Mass of element E (g)</u> molar mass of compound (g)	* 100
Example 1. C			
2. H	ICN		
3. E	Barium phosphate		
d	ecomposed, 5.40 g of oxyger	ompound containing only magner is obtained. What is the percent ink about the formula for magner	composition of

5. Calculate the percent **nitrogen** in these common fertilizers.

• NH₃

• NH₄NO₃

Empirical Formulas

- Gives the _____ whole number ____ of atoms (or moles of atoms) of the elements in a compound.
- Example: What is the empirical formula of a compund that is 25.9% N and 74.1% O?
 - o Steps to find:
 - 1. Convert mass % to grams. (pretend you have 100 grams)

mass to mole

% to mass

2. Divide by molar mass to get moles.

÷ by small

3. Divide answers from step 2 by smallest # of moles.

× til whole

4. Multiply to get smallest whole #s. (if unnecessary, jump to step 5)

- 5. Write the empirical formula by putting answers to 3 or 4 as subscripts.
- Practice:
 - o Determine the empirical formulas for the following:
 - 79.9% C, 20.1% H
 - 67.6% Hg, 10.8% S, 21.6% O
 - 27.5% C, 1.15% H, 16.09% N, 55.17% O

■ 94.1% O, 5.9% H

Molecular Formulas

• Either the same as the empirical formula, or a simple ______ multiple of the empirical formula.

Comparison of Empirical and Molecular Formulas					
Formula (name)	Classification of formula	Molar mass			
СН	Empirical	13			
C ₂ H ₂ (ethyne)	Molecular	26 (2 × 13)			
C ₆ H ₆ (benzene)	Molecular	78 (6 × 13)			
CH ₂ O (methanal)	Empirical and Molecular	30			
C ₂ H ₄ O ₂ (ethanoic acid)	Molecular	60 (2 × 30)			
C ₆ H ₁₂ O ₆ (glucose)	Molecular	180 (6 × 30)			

- Example: Calculate the molecular formula of a compound whose molar mass is 60.0 g/mol and the empirical formula is CH₄N
 - o Steps to find:
 - 1. Calculate/determine the empirical formula.
 - 2. Determine the molar mass of the empirical formula.
 - 3. Divide the molecular molar mass (usually given in the problem) given by the empirical molar mass.
 - 4. Multiply the empirical formula subscripts by the value determined in step 3.

• Practice:	
1. What is the empirical formula of an unknown compound that has the percent compos of 47.0 % potassium, 14.5 % carbon, 38.5 % oxygen.	ition
2. If the true molar mass of the above compound is 166.22 g/mol, what is its molecular formula?	
3. A compound with an empirical formula of C ₂ OH ₄ has a molar mass of 88 grams per mole. What is the molecular formula of this compound?	
Chapter 10 Mixed Practice • Convert the following: • 2.0 x 10 ²³ molecules of oxygen gas (formula hint: it's a super 7!) to liters of gas at S7	ГР.
 1.45 grams of calcium nitrate to formula units. 	
 0.75 moles of sodium chloride to grams. 	
• Calculate the percent nitrogen in NH ₄ NO ₃ , a common fertilizer.	
 Determine the empirical formula for the following: 40.00% C, 6.713% H, and 53.28% O on a mass basis 	
 The empirical formula of adipic acid is H₅C₃O₂. What is the molecular formula if the molecular mass is 146 g/mol? 	ılar